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420 P. HOLMES

We study the nonlinear oscillator
i+ 84— fr+ax® = fcos (wt) (A)

from a qualitative viewpoint, concentrating on the bifurcational behaviour occurring
as f > 0 increases for a, f, 8, w fixed > 0. In particular, we study the global nature
of attracting motions arising as a result of bifurcations. We find that, for small and
for large f, the behaviour is much as expected and that the conventional Krylov-
Bogoliubov averaging theorem yields acceptable results. However, for a wide range
of moderate f extremely complicated non-periodic motions arise. Such motions are
called strange attractors or chaotic oscillations and have been detected in previous
studies of autonomous o.d.es of dimension > 3. In the present case they are intimately
connected with homoclinic orbits arising as a result of global bifurcations. We use
recent results of Mel’nikov and others to prove that such motions occur in (A) and
we study their structure by means of the Poincaré map associated with (A). Using
analogue and digital computer simulations, we provide a fairly complete character-
ization of the strange attractor arising for moderate f. This ergodic motion arises
naturally from the deterministic differential equation (A).

1. INTRODUCTION: A PROBLEM IN NONLINEAR VIBRATIONS

Techniques such as averaging (the Krylov-Bogoliubov method), harmonic balance or equiva-
lent linearization are often used in nonlinear vibration problems. One of the aims of this
paper is to show that such methods can fail to detect, or at best obscure, important behaviour.
In particular, when the small parameter conditions are not met, then solutions obtained by
averaging can be grossly in error qualitatively as well as quantitatively. However, our main
aim is to give an example of a simple forced oscillator which possesses ‘strange’ solutions
(Holmes 1977 6), solutions which depend on initial conditions in a particularly delicate manner
and which behave in an apparently random or chaotic way. We stress that the system in which
this behaviour occurs is deterministic and that solutions are stable in the sense that large
(transient) disturbances die out after sufficient time and all solution curves x(f) approach a
domain 4 in the state space as ¢ - co0. 4 appears to contain an attracting set S which has an
extremely complex structure. Sets such as § are called strange attractors (Guckenheimer 1976;
Holmes 19775); they have previously been detected in problems of population dynamics
(May 1974), fluid dynamics (Lorenz 1963, 1964; Ruelle & Takens 1971; Baker ef al. 1971;
Hénon 1976) and in models of the Earth’s magnetic field (Cook & Roberts 1970; Robbins
1977) and they are currently the subject of much interest among mathematicians. The author’s
paper (Holmes 19775) provides a simple introduction to some of this work, which draws on
recent developments in differentiable dynamics (Chillingworth 1976; Markus 1971; Smale
1967).

In this paper we study § from two viewpoints. In part I (§§ 2 and 3) we consider the ordi-
nary differential equation (o.d.e.) of the oscillator and prove that homoclinic orbits arise for
certain parameter conditions. These predictions are then compared with analogue computer
simulations. We also discuss the limitations of the conventional averaging method. With the
analogue computer we produce plots of the Poincaré map associated with the oscillator and
are thus able to study the structure of § in terms of a two dimensional mapping rather than a
three dimensional vector field.

We note that a number of other workers, notably Hayashi et al. (1969, 1970, 1973), Ueda
et al. (1973) and Tondl (1976) have also used these techniques. However, their results have
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STRANGE NONLINEAR OSCILLATIONS 421

not been fully discussed nor always interpreted correctly (Holmes 1976). This prompts the
second part of our work (§§ 4 and 5) in which we construct and study a simple difference
equation which shares much of the behaviour of the Poincaré map. In fact, it appears possible
to capture the bulk of the behaviour in a one dimensional mapping. Previous studies of
o.d.es with strange solutions (Guckenheimer 1976, 1978; Rand 1978; Williams 1978) and in
particular of the Lorenz equation (Lorenz 1963) have used such reduction to one and two
dimensional maps, the properties of which are more easily understood. For previous work in
mechanics, see the papers of Hsu et al. (1975, 19774, b). We conclude with comments on the
physical implications of the work.
1.1. A physical problem

The equation studied in this paper has physical relevance as the simplest possible model of a
buckled beam undergoing forced lateral vibrations. The partial differential equation governing
such motions, obtained by standard methods, can be written in non-dimensional form as

1
W+ T — K UO (v'(g))zdg] 0"+ 80+ = Px, 8), (1.1)

where v = v(z, t) is the lateral deflexion, a prime denotes differentiation by z and a dot
differentiation by ¢, § represents viscous damping, K represents the nonlinear membrane
stiffness and I is the axial compressive load applied to the beam (cf. Huang & Nachbar (1968)
for derivation of the equation). The nonlinear term expresses the fact that the axial force in
the beam increases with lateral deflexion, leading to increased restoring forces. We assume
simply supported boundaries (v = »” = 0 at z = 0, 1) and that I' > =2, the first Euler load,
so that the beam takes up a stable buckled state at rest when the lateral force, P, is zero.
Our main simplification involves the assumption that the force P(x, t) has a sinusoidal spatial
distribution coinciding with the first mode of the beam and that the time dependence is also
sinusoidal. Thus, by writing

P(x,t) = fcos (wt) sin (nz), v(z, t) =

7

x;(¢) sin (nz), (1.2)
1

I M=

and carrying out the conventional Galerkin averaging we obtain a set of N second order
o.d.es, coupled in the nonlinear terms only. Taking just the first of these (constraining x; = 0;
= 2,..., N) we obtain the equation studied below

£+ 0% — fx+ax® = fcos (wt), (1.3)
where f=n*l"-n?) and a = }Kni

Note that this is Duffing’s equation with negative linear stiffness, since I" > =2,

We should stress that (1.3) is only an approximate model for the physical problem outlined,
and that all higher modes will be excited by P(¢) through the nonlinear coupling. However,
we can expect these modal contributions to be small in comparison with the first mode and
thus we might expect (1.3) to provide a reasonable model, at least for I" close to n? and f
fairly small. It may in fact be possible to show that (1.3) captures all the important behaviour
in a qualitative sense in this parameter range. For f = 0 a more complex problem of panel
flutter has been treated (Holmes 1977a; Holmes & Marsden 19784) in which centre manifold
theory (Marsden & McCracken 1976) is used to obtain a model similar to (1.3) from the full
partial differential equation. Similarly, static loads (P(x, t) = Fy+f(¢) p(x)) and additional

41-2
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422 P. HOLMES

structural damping might be included. For our study we take (1.3) as the simplest system o.
this type which displays strange solutions; we can certainly expect other, more complex models
to display behaviour at least as complicated (cf. Holmes 1979).

2. THEORETICAL ANALYSIS
2.1. General properties: global attraction

We first consider the equations

}2'1 = x23
Xy = Pry— Oxy— i, (2.1)
B, 8, > 0;

i.e. (1.3) without external forcing. It is simple to check that (2.1) possesses three fixed points
at (0, 0) and ( + (#/a)%, 0), the latter two being sinks with eigenvalues A, , = 3(— &+ (82—85)%),
and the origin a saddle point with A; , = }(— &+ (62 +4p)}). All three points have eigenvalues
with non-zero real parts (hyperbolic fixed points) and, since it can be shown that there are
no other critical elements such as closed orbits in the vector field of (2.1), the system is (topo-
logically) structurally stable (Chillingworth 1976). Linearization and calculation of eigen-
values provides local stability conditions, but for global stability we must seek an appropriate
Liapunov function (Hirsch & Smale 1974).
We first rewrite (2.1) in terms of deviations from the two stable sinks:

Y1 = Ya» }
Jo = =2y —Sya £ 3(af) yi—ad (1 = %t (2/B)L, 4o = %),

and we take as a Liapunov function

(2.2)

V = 355+ Byi+ 1o+ v(3oyi+y19.).

It is easy to check that this is globally positive definite and increasing with (y3+32) for all
0 < v < ¢. Differentiating V7 along solution curves of (2.2), we obtain

dV/dt = — (8- v) y3— 208y} + 3v(af)t 43 £ 3(af)? yiys — vyl

Clearly if y, and y, are sufficiently large then the —avy} and — (6—») y3 terms dominate the
3(ap)? (vyy+y,) y2 term and choosing v e (0, 8), we have dV/d¢ < 0. Thus solutions of (2.2),
and hence of (2.1), remain bounded for all time and approach and enter a bounded set 4 = R2.
To show that almost all solutions actually approach one or other of the sinks at (+ (a¢/g)%, 0)
we use a second Liapunov function (actually a pair of functions, one for (4 (/)3 0), one
for (~ (B/a)}, 0)):
V' = dyh+ Byt + 3(aB) i+ dowt+ v(30y3+410n)-

These functions are defined within the two areas enclosed by the loop I, of figure 3, below,

whose equation is
d H(xy, %) = 33— B3+ 3ot = 0. (2.3)

We thus obtain
=7 =~ (8—7) 53— 20843 £ 3(a)} 4 — v,

which is negative definite inside the loop I'y. Thus all solutions starting within I'y approach
one or other of the sinks as £ -+ + co. It remains to check that there are no attractors outside I',.
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STRANGE NONLINEAR OSCILLATIONS 423

Since there are no fixed points and the system is planar, the only possibility is a limit cycle.
Taking the Hamiltonian energy H(xy, x,) of equation (2.3) and differentiating along solutions
of (2.1) we obtain dH/d¢ = — 823. The energy is therefore decreasing on any closed curve
and thus no limit cycles exist. This shows that any solution not starting on the stable manifold
I'® of the saddle point approaches a sink as £ - + oo, as shown in figure 1.

Ficure 1. The planar vector field for f = 0; &, 8, & > 0.

We now consider the situation for f # 0. In this case (1.3) can be rewritten as a first order
autonomous o.d.e. on R? x §1, where R? is the (x;, ¥,) plane as above, and 0 € S denotes points
on the unit circle: & = %,

Ay = [x;— Oxy— i3+ f cos 0, (2.4)
b = w.
The third component, 6 = w, shows that (2.4) has no fixed points. For small f we can consider
(2.4) as a periodic perturbation of (2.1) where (2.4) with f = 0 represents the trivial case in that
behaviour in the (x4, x,) plane is identical for all 6 € [0, 27/w). In particular, the fixed points
(0, 0) and ( + (B/a)%, 0) generate hyperbolic circular closed orbits in R2 x S. By the invariant
manifold theorem (Hirsch ¢t al. 1977) orbits persist for (small) f # 0, losing their circularity
but retaining their qualitative features. Thus we expect to obtain two stable attracting orbits
‘close’ to (+ (B/x)}, 0) and a single saddle type orbit close to (0, 0). This is indeed the case
(8 3). Moreover, since (2.1) is a (globally) structurally stable system we also expect the global
structures of the manifolds I'S and I'™ to be preserved (Chillingworth 1976; Hirsch et al. 1977).
To confirm and extend these results we again use the Liapunov function V', but now dif-
ferentiate along solution curves of the forced system to obtain
AV*/dt = — (8- 7) 3= 20yt £ 3v(af)} g~ voyh+ya fcos (0f) + vy, fos (o),
< = (0=v) Y3 —2vByi + 3v (@)} v — vayi+ [yaf] + [vyrf]- (2.5)
Setting f = 0(e?) (¢ € 1) we can see that if y,, y, are (slightly) greater than O(¢) then we have
dV’/dt < 0. Thus solutions remain bounded and in some neighbourhood of (y,, y,) = (0, 0)
for small f.
We might also suspect that global stability is preserved for large f. To see that this is the
case we return to the first Liapunov function ¥ and differentiate along solution curves of the
forced system:

dV/dt = — (8 —v) y§—2vfy3 + 3(af)t (— vy, +ys) y3 — vyt +/ vy, +ys) cos (w2),
< —(6—v) y3—2vBy3+3(ap)? |43 ya| +3v(aB)} |43] + | vy S| + |yaf| —avyl.
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424 P. HOLMES

Again it is clear that dV/d¢ < 0 if we take y; and y, sufficiently large. Thus for small f solu-
tions tend to remain in either of two regions Af, 45 and for large f within the large region 4§
as shown in figure 2.

Remark. Tt is possible to obtain analogous global stability criteria for the partial differential
equation (1.1) working in a suitable function space setting (Holmes & Marsden 19784; Holmes
1979)-

Xg Xg

‘f{'\/ o A _—
\'\)L;lé \\—‘\—J‘L

N
A

(@) (8)

Ficure 2. Global stability for f # 0; «, f§, 6, w > 0.
(a) Small Force, f = O(e?); () large force.

2.2. Application of the averaging theorem

We apply a version of the well known averaging theorems originally due to Krylov and
Bogoliubov. This version is due to Hale (1969) and has been stated and used previously in
an application to the Duffing equation with positive linear stiffness (Holmes & Rand 1976).

We first employ the transformation z, = x, cos (wt) — (xy/®) sin (0t), zy = — %, sin (wt) — (¥,/w)
cos (wf) with inverse x, = z; cos (wt) —z, sin (wt); ¥, = —w[z; sin () + z, cos (wt)]. The
transformed system then takes the form of a pair of non-autonomous first order o.d.es.

2z, = i—){p[zl cos (wt) — z, sin (wt)] + [z, cos (wt) — z sin (wt)]?

— dw[z, sin () + 2z, cos (wt)] —f cos (wt)} sin (vi), (2.6)

2

% {p[z, cos (wt) — z, sin (wt)] +a[z; cos (wt) — z, sin (wE)]?
— 8wz, sin (i) + z, cos (wt)] —f cos (wt)} cos (wt).
Following the averaging theorem we replace the right-hand side of (2.6) by the autonomous

functions obtained by averaging for ¢ € [0, ). For periodic functions we simply integrate
over ¢ = 0 - 2n/w. We thus obtain

Z) = j07{~pzy— dwz, — faz,(2}+ 23)}, }

2.7
Yo pzy — b0z +dazy(A+ 28) — ), 2.7

I

22
where p = —f—w? The approximate solutions provided by (2.7) are valid for all ¢ (Hale
1969), provided that the parameters p/w, a/w, ¢ and f/w of (2.6) are small. Since p = —f—w?,
this implies that both £ and @ must be small.

Now consider the invariant manifold results above: that for small f there are two stable

attracting orbits near (+ (8/x)%, 0). To study the behaviour of those orbits it is natural to
transform the equations so that one of the points (say (— (8/a)%, 0)) lies at the origin:

= Yo } (2.8)

2 = = 2Py — 8y, +3(af)} y}— oy} +.f cos (o).
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STRANGE NONLINEAR OSCILLATIONS 425

Applying the averaging theorem to this system, all quadratic terms vanish and we obtain an
expression identical to (2.7) above but with p replaced by v = 24— w2

If the small parameter conditions noted above are met (with v replacing p as appropriate),
then a fixed point solution (zj, z;) of (2.7) corresponds to an almost sinusoidal solution of the
original system (1.3). More precisely, if we write (2.7) in polar coordinates, z = (z2+ z2)},
0 = arctan (z,/z,), we obtain

Z = jwY —dwz—fsin 0},

2.9
0 = o p+3ar2—(f/r) cos 8} (replace p by v when appropriate).} (29)

A fixed point (z’, 8') of (2.9) then corresponds to a solution of (2.4) with average modulus z’
and phase &', z’ cos (wt+0'). Moreover, the stability properties of solutions of the averaged
system carry over to the original system (Holmes & Rand 1976) and we can thus study the
bifurcations in the vector field of (2.4) by examining those of (2.9).

/—\ Io
[N T ™™

Y

Ficure 3. The Hamiltonian system %, = x,, &, = fx, —ax3. ¢* are centres, s is the saddle point.

L _\—

In the work below we are particularly interested in behaviour as f is increased from zero
for fixed a, 8, & and w. Physical considerations, supported by our invariant manifold analysis
above, suggest that for small f there will be stable oscillations near (+ (8/«)%, 0). Physical
considerations also suggest that for large f; oscillations will occur which encompass the pos-
itions of all three fixed points of the unforced system. It turns out that the former, small force,
oscillations are represented reasonably well by the averaged system (2.7) with p replaced by
v, and the large force oscillations by (2.7) as it stands (we demonstrate the comparison in § 3,
below). However, the main investigation in this paper is for the case of ‘medium’ f,; for which
the averaging theorem spectacularly fails. To investigate phenomena that arise in this case
we turn to the work of Mel’nikov (1963).

2.3. Periodic perturbation of an autonomous system with homoclinic orbits

To apply the methods of Mel’nikov we first rewrite (2.4) as a perturbation of a Hamiltonian
system which possesses a ‘saddle connection’, in this case the four seperatrices leaving and
entering the saddle point, which form two loops, the whole being marked I in figure 3. The
full system is then

Xy = X,
= 2.10
Ky = Px,— ol +e(fcos wt—&xz),} (2.10)
(i.e. we have replaced & by €8, f by ¢f with ¢ small). We note that Morosov (1973, 1976) has
studied a similar system, but with positive linear stiffness.
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426 P. HOLMES

Next consider the Poincaré map P: X - X defined on the cross section X = {(x,y, 0) €
R2 x §1|0 = 0, €[0, 2r/w)} (Chillingworth 1976). Note that, in view of the third component of
(2.4), P is defined globally and 2 = R2. Closed orbits of (2.4) correspond to fixed points of P
and stability types also carry over. The qualitative structure of P is easily found for the trivial
case ¢ = 0. P possess three fixed points at s = (0, 0) and ¢t = (+ (B/a)%, 0) and the saddle
seperatrix orbits I" of (2.1) become stable and unstable manifolds A§ and M} of the saddle.
For ¢ = 0 the manifolds are identified.

{e) (d)
Ficure 4. The possible structures for stable and unstable manifolds of the saddle point s; (a) M ‘outside’ M?;
A () < 03 (b) M “inside® M?; A (t,) > 0; (¢) M} intersects M transversally; 4 .(t)) S 0; (d) M} “touches’
M:; Ae(to) = O or Ae(to) s 0'

Clearly the structure of these manifolds plays an important role in determining the nature
of solutions of (2.10), and we shall study this for ¢ # 0 by Mel’'nikov’s methods. In particular,
we wish to know how the structurally unstable loops I’y = M85 n MY} will break for fixed
B, 8, a, w, f as € increases. One of three situations will occur (cf. Chillingworth 1976): (1) each
loop breaks so that the unstable manifold M}y passes ‘outside’ the stable manifold M§; (2)
MY passes ‘inside’ M%, or (3) MY and M§ meet. If they meet they generally do so transversally,
although quadratic or higher order contact is possible. Since M§ and M} are invariant under
P, the existence of one intersection implies the existence of infinitely many. The various cases
are shown in figure 4.

Mel’nikov (1963) showed how a function 4,(#) can be derived for systems such as (2.10)
so that the value of 4,(¢,) determines the structure of My and AS. In particular, if 4,(4)
oscillates and takes both positive and negative values then case (¢) (transversal intersection)
occurs. Similarly if 4,(¢)) > 0 (resp. < 0) case (b) (resp. (a)) occurs and if 4,(¢,) > 0 (resp. < 0)
(i.e. 4,(t,) oscillates and (periodically) touches zero) the left (resp. right) hand version of case
(d) occurs.

If the perturbed system is expressed in general terms as

x = Po(% y) +ep1(x, Y, wt, 6),}

. 2.11
g = qo(%, y) +eq,(x, y, 0t, €), (2:11)

+ In Mel’nikov’s paper there is an inconsistency between the signs in the expression for 4.(,) on page 30 and
the figure on page 33; moreover, the condition p,(0, 0, wt, €) = ¢,(0, 0, w?, €) can be relaxed.
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STRANGE NONLINEAR OSCILLATIONS 427

where f,, ..., ¢; possess certain properties described by Mel’nikov (1963), and in particular
the unperturbed system (¢ = 0) possesses a non-degenerate saddle point at (0, 0), then 4,(¢,)
can be written

A,(ty) = = qo(%0, Yo) (& (b0, 0, to) — 25 (tos @, 1)} + Lo (%o, Yo) (Y (bos @, to) =¥z (b @, t0)}. (2.12)
Here the point (%, y,) is chosen to lie on the seperatrix I'y of the unperturbed system (cf. figure
3) with (xy, y,) # (0, 0) and (xE(¢, w, &), yZ(¢, o, t,)) denote the solution curves of the perturbed
(e # 0) system starting at points (xZ(Zy, 0, ), yE (fp, 0, %)) at time #, and tending to (0, 0)
as ¢ > + oo respectively. It can be checked that (xF(ty, w, t,), y£ (%, ®, )) lie on the normal
to the trajectory Iy passing through (%, %,). Thus 4,(%,) measures the distance between the
two branches of the seperatrices of the perturbed system; i.e. it characterizes the manner in
which I, breaks for € # 0. In fact Mel’nikov proves that the solutions (¥ (¢, w, &), y=(t, w, 1))
do exist for ¢ # 0, small, and that the function 4,(%,) thus is well defined. Moreover, he shows
how 4,(¢,) can be constructed as a power series in ¢, 4,(4,) = X 4%(t,) €'. For small ¢ only
the first term is necessary. This is given by :

A1) = f:o {P1(%6(t—15), Yo(t —10)) - (%ot — o) s Yot —1t0)) — g1 (%ot — )5 Yo(t — 1))

<ol =) gt =t} exp [ = [ (%22 (a0, 90(8) + 32 (s0(8), (£ €]
(2.13)

where (xo(t—1t,), yo(t—1,)) denotes the solution of the unperturbed system on I starting at
(%0, Yo) = (%6(0), ¥5(0)). Arnold (1964) shows how A4(f) can be constructed in another
manner in the case of multidimensional Hamiltonian system; see also McGehee & Meyer
(1974)-

The statement that 4,(¢,) ‘measures the distance between the two branches of the seperatrix
of the perturbed system’ can be made more precise in terms of the Poincaré map. Consider
the cross section of equation (2.10) for some time #: 2y = {%;, %, | 0 = joty/n; £,€[0, 2n/w)}.
If we draw a normal n through some point (%, ) € I'y = 2, (cf. figure 3), it will cut M}
and M$ at the points (x7 (4, 0, %), ¥ (fpy ®, 8)) and (x5 (4, ©, &), Yz (4, ©, %)) respectively, as
Mel’nikov notes. 4,(¢,) provides a measure related monotonically to the distance ((x} —#7)%+
(y+ —y7)?)? for a fixed ¢, (remember that py(xg, ¥o) and go(xg, %) in (2.12) are fixed). As 7,
varies, the cross section X, moves and hence the positions of My and M5 on X change; in
particular, the points of intersection with n, (xf, y¥), change. If 4,(f) varies such that it
changes sign at some 4, = f; then M and M$ must intersect near (xo, ¥,) at 6’ = jwty/n.

As we point out in the following sections, the existence of homoclinic points at such inter-
sections implies that there is an extremely complex invariant set £y, a ‘Smale horseshoe’, in
the neighbourhood of M§ and M. In particular £ possesses orbits of all periods in addition
to dense nonperiodic orbits (Chillingworth 1976; Smale 1963, 1965, 1967). We shall be con-
cerned with the effect of £, on the global behaviour of orbits of P.

Returning to equation (2.10), we first solve the unperturbed system for the saddle connection

I'y; i.e. the level curve 1a3 — 183 + Joad = 0, (2.14)
Recalling that x, = dx,/df, we can obtain a relation between x, and ¢ by integrating (2.14):
=ty = +p-% f 1 . 2.15

0= 207 )i w1 /28] (219

42 Vol. 292. A
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Writing (a/24)} x; = sin ¢, integrating (2.15) and taking the initial value x,(f,) = + (2f8/a)?
or ¢(¢,) = + }m, we obtain

In [tan (3())] = £ (B)} (1= t), ) e
or $(t) = 2 arctan [exp (B)} (t—1,)] = arc cot (—sinh ((B)} (t—14,))). '
Thus x,(¢) = (28/x)t sech 1, o 17

xy(t) = B(2/x)} sech 7 tanh T,} (2.17)
where T = +B(—1).

Equations (2.17) are parametric equations for I'y (2.14).
We now insert the appropriate terms p;, = 0, ¢, = (fcos (wt) — 8x,), po = %3, ¢o = Py —otx
in (2.13) to obtain

A(t,) = —f:o (f cos (wt) — 0x,) %5dt,
= 2(w2f_w sech? 7 tanh? 7 ————f,b’( )% fwm cos [ ( +t0)] sech 7 tanh 7 %%,

] ®
- ———2? f sech? 7 tanh? 7d7 —f( ) [co> f cos (r/p) sinh 7 dr

cosh? 7

—sin (oty) f © sin (0r/f) sinh 7 d’r]. (2.18)

— cosh? 7

The second integral in (2.18) is zero, since it is over the product of an odd and an even func-
tion. The first integral can be evaluated directly and the third by the method of residues to

obtain AV(ty) = 48p%/a+frw(2/x)? cosech (nw/28%) sin (wt,). (2.19)

It is clear that for & > f, A%(f,) > 0 for all ¢, € [0, 2n/w); for small forces, then, we expect to
obtain the structure shown in figure 4 (5). This confirms the invariant manifold results noted
above (cf. small perturbation of figure (1)). The critical value of f, f,, for which M} and M3

touch, is given by Fo ~ £[88%/nw(20)] sinh (nw/24%). (2.20)

Thus, for «, B, J,  fixed we expect homoclinic motions to occur for |f| > f,.

Now, recall that f = ¢f, & = €d. For small ¢, then, we can find the original force amplitude
#, as function of a, B, ¢ and w, for which homoclinic motions first appear. We simply drop the
overbars in (2.20), and, inserting the values chosen for the analogue computer study in § 3
(e = 100, # = 10, & = 1, w = 3.76) we obtain

fo & 0.79. (2.21)

In view of the symmetry of (2.10) for ¢ = 0 (I, is a double loop), we expect intersections to
occur to the left and right of s simultaneously (cf. § 2.4).

2.4. Symmetry properties
Equation (2.4) has the property that, if (%, %y, 6) solves it then so does (— &, — &, O+ n/w).
Thus, if an orbit (¥,(¢), #5(¢)) exists then it either has a partner (-, (¢+n/w), —%(t+n/w)
or it satisfies the symmetry property itself &,(¢) = — %, (t+7/w), ¥,(t) = — Fy(t + n/w). We call
such an orbit self-similar.
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A number of simple consequences follow from the above:
1. Subharmonics of period 2rN/w always occur in multiples. To prove this, suppose that a sub-
harmonic occurs singly and is therefore self-similar. However, self-similarity implies that

5(1) = — B+ n/0) = — (= F(t+2n/0)) = Ft+2n/w),

and that the orbit is therefore in fact harmonic of period 2n/w.

2. The period 2n/w saddle orbit (¥§(¢), ¥5(¢)), whose existence was established in §2.1, is
self-similar.

3. If a homoclinic orbit to (x5(¢), ¥5(¢)) exists ‘to the right’, then a similar homoclinic orbit
to (x§(¢), ¥5(¢)) exists ‘to the left’.

2.5. A summary of predicted behaviour

Here we summarize the results obtained in this section relating to the behaviour of solutions
of (2.4) as fincreases from zero for «, f, 6, w fixed > 0. For f = 0 the straightforward phase
portrait of figure 1 applies, and the stable and unstable manifolds A, M$ of the saddle points
= (0, 0) retain the structure of the separatrices I'%, I"® so long as f remains small. Similarly,
the three (hyperbolic) fixed points in R? of figure 1 become hyperbolic closed orbits in R2 x §*
and the stability types are maintained for small f. Thus we expect the averaging theorem
applied locally near (x, x,) = (+ (8/a)}, 0) to give reasonable results (equation (2.9) with p
replaced by v = 26— w?).

As f continues to increase, M¥ and M$ begin to wind back and forth, and ultimately, for
f & f,, they touch. They then intersect transversally for all f > f,, giving rise to homoclinic
motions. f, is given by equation (2.20). We do not yet know how the homoclinic intersections
affect the attracting closed orbits ‘near’ ( + (8/)%, 0), but, in view of (2.5), we do know that
global attraction is preserved.

Finally, for f large, we expect the averaging theorem to yield reasonable results again,
since forced motions will occur which lead to orbits surrounding the positions of all three fixed
points of figure 1.

In the remainder of this paper we make use of analogue computer results and of construc-
tions of the Poincaré map to study the bifurcations of (2.4) occurring for f > f,.

3. ANALOGUE COMPUTER STUDIES OF THE O.D.E.
3.1. General behaviour: the Poincaré map

Using the analogue computer to solve (2.4) and recording only the peak amplitude of
x = x,(¢) for various fixed values of f, f, 8, «, w, we obtain the data shown on figure 5. We
also show the response curves predicted from the averaging analysis of § 2.2. It is clear that
for f < 0.5 and f 2 2.5 the averaged results are reasonable. However, for fe (1.08, 2.45)
they fail completely. In this region, indicated by the shaded box, solutions behave in a complex
and erratic manner. A typical solution trajectory, projected down from (x;, x,, #) space to
(%1, %5) space, is shown in figure 6. The apparent crossing and branching of solution curves
is an artefact of the projection (cf. Cook & Roberts (1970), figs 3-4, where solutions of an
autonomous system with a strange attractor are shown). Note that figure 6 represents the
situation many minutes after computation commenced and that all the transient behaviour

42-2
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had decayed to insignificant proportions. Thus we shall assume that figure 6 represents a
sample of the type of solution found in the attracting set S € 4 for the parameter values
indicated.

At first sight figure 6 appears extremely complicated. However, if instead of examining
solution curves of the o.d.e. we examine successive iterates of the Poincaré map, P: R? - R?;
R? = {x, %,|0 = 0, 2n/w, 4n/w, ...}, the behaviour is considerably clearer. Using a track-
hold device, the computer records the values of x, and x, at the appropriate times and feeds
these values to a plotter. The techniques are quite well known and have been used by various
workers; cf. Tondl (1976), Fiala (1975) and Hayashi et al. (1969, 1970, 1973). Hayashi has
obtained some results similar to those below. Typical results are shown in figure 7. In figure
7a (f = 0.2) the structure of stable and unstable manifolds is simple and qualitatively identical
to that of the damped oscillator with no external force, equation (2.4), figure 1. The local
presistence of closed orbits (fixed points of the Poincaré map) is clear throughout figures 7a—d.
However, as f increases, the global behaviour of the manifolds of saddle point s becomes in-
creasingly complicated until, at f = f, ~ 0.76, the stable and unstable manifolds A/¢ and M}

1.0

o

> o000 :

X period 5 motion e,.“_._o__'__‘.‘_‘—!-:L——-—Slnk

é 0.5 ..,..#LV///}.I;{{/////////////////IY/////MMW/I//I/] ------------ saddle

ik o “"'strange attractor

E in o, .

- Csmk o rest position (B}

5]

o saddle
e 1 e 1 1 ]

force amplitude, f/V

Ficure 5. Analogue computer measurements of response amplitude versus force: « = 100, f = 10, & = 1,
© = 3.76. For f < 1 and f > 2, where periodic almost sinusoidal response is obtained, the experimental
measurements indicate the peak modulus of an equivalent (equal power) sine wave. In the region fe (1.1, 2.5)
non-periodic motions are observed, these are denoted by hatching and are marked ‘strange attractor’. At
S = 0.95 the periodic orbits bifurcate to orbits of period 2 and in an open interval fe (1.15, 1.2) a period 5

motion is observed in place of the strange attractor. , —— —'— equation (2.9), p = —f—0w?;
++, equation (2.9) v = 28 —w?; ...... » measurement-peak modulus of equivalent sine wave.
X2

~/a

)/

~——

Ficure 6. Solution curves projected on to (xy, ;) space for f = 1.5, ¢ = 100, 8 = 10, § = 1, @ = 3.76.
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touch and then, for vf 2 0.76, intersect ,transvcr_sally. Intersections of left-hand manifolds
. . Downloaded from [sta.royalsocietypublishing.ofg

M3, M5 and right hand manifolds "M}, M 8. occur simultaneously: see § 2.4. The strong

contraction and expansion associated with P forces almost all of these intersections to occur

in a narrow strip close to the location of I'y (figure 3) and only a few intersections are shown

in_figures 7¢ and d.
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Ficure 7. Analogue computer plots of the Poincaré map: stable and unstable manifolds of s for various force
levels: @ = 100, # = 10, 8 = 1, w = 3.76; (a) f = 0.2; (b) f = 0.75; (c) f = 0.90; (d) f = 1.10; ‘strange
attractor’: successive iterates approach and tend to remain on M}; (¢) f = 1.20: Period 5 motion.

The parameter value at which M§ and M} first touch {f, ~ 0.76|0 = 1, f# = 10, « = 100,
® = 3.76} compares very well with the value of f, & 0.79 predicted by the method of Mel’nikov
in § 2.3. According to the theory, for f > f; transversal homoclinic intersections persist (cf.
Morosov 1976, §4). Physically the presence of homoclinic motions causes solutions of the
o.d.e. (and hence iterates of P) to ‘wander’ in an apparantly irregular manner for some time
before approaching an attracting set.

Note that for f = 0.9 (figure 7¢) the sinks of P still exist and almost all orbits of P approach
either one of these as ¢ > + 0. These fixed points remain sinks until £ & 0.95, at which value
they become saddle points, each throwing off a pair of sinks and thus creating two orbits of
period 2. The bifurcation therefore appears to involve one simple eigenvalue of DP(a*), the
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map P linearized at either sink (a%), passing through — 1 while the other is negative and o.
modulus < 1. The discussion of § 2.4 shows that these bifurcations occur simultaneously.

At f ~ 1.04 a second bifurcation occurs in which the orbits of period 2 become unstable
and throw off orbits of period 4. A sequence of successive bifurcations to periods 8, 16, 32 then
appears to occur, with an accumulation point at f ~ 1.08. After the period 8 motions the
periodic points in P can no longer be clearly distinguished. For f 2 1.08 successive iterates of
P move in an irregular fashion in the sense that they do not seem to be attracted to a periodic
point. Power spectra taken from up to 104 iterates indicate no periodic behaviour (see § 3.2).
However, attracting points of very high period may be present and the rate of attraction may
be low. Computational results merely suggest that for 1.08 < f < 2.45 a ‘strange attractor’
exists. Henceforth we call this attractor §; in the remainder of this paper we shall be concerned
with a study of its structure. But first, we note one further feature which suggests the presence
of a strange or chaotic motion. For certain parameter ranges stable attracting motions of
period 5 appear in place of the strange motion; power spectra indicate that these are genuine,
persistent phenomena. A typical motion is shown in figure 7e, with the periodic points of P
indicated. We consider the implications of this in § 4, below.

3.2. The structure of attracting set S for f € (1.08, 2.45)

Although we study a specific attracting set arising in a particular o.d.e. in this paper, both
the attractor and motions occurring in its neighbourhood appear to share many features in
common with other strange attractors (Hénon 1976; Lorenz 1963; Guckenheimer 1976).
This study should therefore be of general interest.

One feature immediately apparent in analogue computer studies (figure 7d) is that orbits
of P appear to approach the unstable manifold MY of s, just as for /£ < 1.08. However, instead
of approaching an attractor either to the right or left of s, as for /' < 1.08, successive iterates
of P merely continue to approach MY and, since MY intersects M$ and winds about in a com-
plex manner, the orbits must follow this behaviour. Observations indicate that orbits continue
to cross between right and left half-planes for at least 108 iterates. For f 2 1.08 the distinct
periodic attractors originally lying in the right and left half-planes apparently no longer exist
and we are led to postulate the existence of (at least one) attracting set S intersecting both half
planes. Presumably iterates of P tend to approach S along or close to M.

If we assume that, ignoring the first hundred iterates of P, almost all orbits have approached
arbitrarily closelyt to S, then it is the structure of S that is actually displayed in figure 7d.
It appears to be the product of a curve and a Cantor set. This is identical to the structure
proposed by Hénon (1976) on the basis of digital computer work on a two dimensional map.
Hénon’s conclusion has been questioned (Newhouse 1977; Zeeman, E. C., personal communi-
cation), and it has been suggested that the motion he observed may have been merely in the
neighbourhood of a Smale horseshoe (Smale 1967) arising from the homoclinic intersections,
and that iterates would eventually approach a periodic orbit of very high period (see § 5.3,
below). However, the number of iterates examined by Hénon (5 x 108) and the present results
strongly suggest that a genuine non-periodic strange attractor is present in this and related
systems. We consider this in more detail in §§ 4 and 5 below. For the moment note that the

1 The rate of convergence is very rapid. After 3 or 4 iterates of an arbitrarily chosen point p the distance

between P4(p) and M? is generally undetectable. For S 1.08 only 10 or 15 iterates are necessary for orbits to
approach to within an undetectable distance of a sink or periodic point.
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structure of § appears to be closely related to the existence of homoclinic points in P and that
the absence of short period attractors for f 2 1.08 and the presence of globally stabilizing
nonlinear terms (§ 2.1) ensures that orbits behave in a complicated manner but that they
approach, enter and remain within a closed set containing § as { - + 0.

UL A sl ) BN P ML P P
W«»W ¥ wwwwwwwwwwuwww

t/s

x(t)

[ l

7 b forcing frequency

juy

i
)
T

PSD level/V?

oy
S
-
T

107 \ 1 .
0 1 2
frequency/Hz

Ficure 8. Time series and power spectra of the nonlinear oscillator: & = 0.2, g = 10, @ = 100, w = 0.6 Hz
& 3.76 rad/s. (a) Typical time series of x(t) after decay of starting transients, f = 1.80; (b) Power spectra
for two force levels. Resolution = 0.01 Hz; 74 degrees of freedom.

Part of a typical time history x,(¢) is shown in figure 84, in which two time scales are appar-
ent, associated with the erratic changes in sign and with the oscillations approximately at
the forcing frequency. Since x(¢) has a ‘random’ appearance, it is natural to investigate the
statistical properties of x(¢), and in particular the power spectrum and autocorrelation function.

3.8. Power spectra of motions in S: summary of behaviour

In figure 85 we show two power spectra for different force levels f (the damping parameter,
&, differs from that used in figures 7a-d: this was merely a matter of convenience and resulted
in no qualitative changes in behaviour). Note that the spectra are essentially continuous and
In (PSD) falls in an almost linear manner with frequency, indicating a law of the form
X(w) ~ A e, Some periodic behaviour at the forcing frequency is apparent but the response
spectrum is not untypical of a broad-band random process, although ¢ arises from a deterministic
o.d.e. Correlation function measurements provide further confirmation of this. The high level
of the spectrum at low frequencies is evidently due to the longer time scale associated with
changes in sign occurring in x(#) when the orbit of P moves from left to right half-plane and
vice versa. In a physical system the frequency of and conditions under which such changes
occur would clearly be of great interest.
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Before considering a theoretical model for P we first summarize the qualitative features
detected by computer and theoretical studies of the o.d.e.

(i) Pis globally stable in the sense that all orbits approach and enter some closed set 4 < R?
as t— + oo.

(ii) P has a natural symmetry inherited from the invariance of the o.d.e. to transformations
of the form (xy, %y, £) = (— &y, — Xy, t+7/W).

(iii) As f changes the following phenomena are present in P: (a) 0 < f < 0.4: two sinks
a* with complex conjugate eigenvalues and one saddle with positive eigenvalues. The saddle
persists unchanged for all £, (b) 0.5 < f < 0.76: the sinks a* now have real, negative eigen-
values. Locally, near a* and a—, the map therefore induces a rotation through =. (¢) 0.76 <
/£ 0.95: homoclinic points appear and persist for all £ 2 0.76. (d) 0.95 < f < 1.04: the
sinks bifurcate at f; & 0.95, becoming saddles and throwing off points of period 2. (¢) 1.04 <
S 5 1.08: A sequence of bifurcations occur at f;, f;, ... in which points of periods 4, 8, 16, 32, ...
appear. At f; ~ 1.08 a motion of very high period or a ‘strange attractor’ S appears. f; appears
to be an accumulation point of the sequence fi, f5, .... (f) 1.08 < f <5 2.45: S exists and
attracts nearby solutions. Finally, for f 2 2.15 an additional pair of fixed points, a sink and
a saddle, appear ‘outside’ the homoclinic points and . After each of the bifurcations at the
St =1,2,3,... for f; € (0.95, 1.08) the newly created saddle points remain for all f > f.
Thus for f 2 1.08 we apparently have an infinite number of saddles of periods 2, 4, 8, 16, ...,
etc., associated with the original sinks and also a countable infinity of periodic points due to
the homoclinic intersections of M% and M?$ (Chillingworth 1976; Smale 1965).

4. APPROXIMATING THE POINCARE MAP

In this section we develop an approximate representation, P, of the Poincaré map P of
(2.4) as a difference equation on R Since (2.4) cannot be solved explicitly we solve the linear
system obtained by setting & = 0 and take the resulting linear map as the linear part of F,.
We then choose the simplest nonlinear function with the required qualitative properties and
add this to complete P;. Although this may seem naive, we shall see that P; reproduces the
behaviour of P remarkably well.

4.1. The o.d.e. as an integral equation

We first apply a standard linear transformation to put equation (2.4) into a more convenient

form: & = Atu—[a'(u+v)3—f cos 6],
o = Ao+ [a'(u+v)%—f" cos 0], (4.1)
0 = w,

where  AF = —38 (A1), o = af/J(B+10Y) and S = fIJ(+1).
Here A* and A~ are the eigenvalues of the autonomous o.d.e. (2.1) linearized at the saddle point
(0, 0). For specific initial conditions (uy, vy, 6,) (4.1) can be rewritten as an integral equation
¢
u(t) = uyer't —f eN" = Lo/ (u(1) +v(7))3 —f" cos (0p+ w7)} dT,
’ (4.2)
u(t) = voe"”*’+f er = {a’ (u(1) +v(7))% —f" cos (04 +wT)} dr.
0
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To obtain an expression for the Poincaré map P we set §, = 0 and ¢ = 2n/w; (4.2) then yields
a difference equation relating successive iterates of P. The linear and externally forced terms
can be evaluated directly to give
Uiy = Vug+ AT —1) /(A2 + 0?) — yia'g (u, ”i)’}
Vigp = V0= AT (Y = 1) [ (v2+ 0%) + v gy (us, v,).
Here y" = €2™*/ and y® = €™ /v are the eigenvalues of DFy(0, 0), the Poincaré map of the
unforced system linearized at the saddle. The nonlinear terms

g = fzn/w e M7 (u(r) +v(r))3dr and g, = jww e 2"(u(1) +v(7))3dr
0 0

cannot be evaluated explicitly.
We now apply a second transformation to put the Poincaré map back in terms of the ori-

(4.3)

ginal displacement and velocity coordinates (¥, y) = (x, %). Using {;} = T{:f}, where T =
[ 1 718] , we obtain

I)/u
Bppa = Yot AT (= 1) /(AT 4 0%) = A~ (7= 1) /(A2 + o)} + g1 (x5, 92),
Yirr = = VY%t (V) gt S (YA (0 = 1) /(A2 4 0?) (4.4)
— YA (A= 1) /(A2 + o)} + g3 (%05 94),

where g; and g3 are defined in the obvious way. We can make a further change of coordinates
such that the saddle point of P is shifted to the origin (the invariant manifold theorem and the
work of § 3 ensures that P has a saddle for f 5 0 as well as for f = 0; for small f, in fact, we
expect the eigenvalues of s to be close to y® and * of the unperturbed system). In the remainder
of this section then, we shall study difference equations of the form

%op1 = Y +F (x5, 9.), }

Yira = —bxg+dy;+Gxi y5); b, d > 0.
where b ~ y%y® and d ~ (y*+ 9®). There would also generally be a (small) term ex; in the
first equation, but we drop this for simplicity: it is certainly possible to find a change of co-
ordinates that will remove it. The important point to note is that (4.5) has a saddle point with
eigenvalues |y3| > 1, |v3| < 1, v§ and ¥§ > 0 and |yjy§| < 1if b and 4 are chosen appro-
priately. For small f, yj and % are close to y" and 7* defined above. The local qualitative
properties of P, the approximate Poincaré map given by (4.5), are then identical to those of
the o.d.e’s Poincaré map P studied above and in § 3. For the studies below we take b = 0.2
and d € (2, 2.8); the reader can check that the eigenvalue conditions specified above are satis-
fied. Note that the linear terms in (4.5) take a standard form which is closely related to the
local coordinate systems employed by Gavrilov & Silnikov (1972, 1973) in studies of homo-
clinic motions.

(4.5)

Having fixed the linear part of our approximate map F;, we now consider the nonlinear
terms F and G. Since explicit expressions cannot be obtained we resort to a subterfuge. We
choose to study the ‘simplest’ nonlinear difference equation with the requisite properties out-
lined at the end of § 3 (cf. Hénon 1976). We shall study an analytic one-to-one map; note
that the Poincaré map actually may not be analytic, but the existence and uniqueness theorem
for o.d.es guarantees that a Poincaré map can be defined and that it will be one to one and
possess some differentiability (here, in fact, it will be C%).
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4.2. The ‘simplest’ cubic map

The studies of §§ 2 and 3 indicate that homoclinic motions are of great importance in .
We therefore consider the maps introduced by Smale (1963, 1965, 1967) in this connection.
The classical Smale horseshoe (cf. [3]) is a one to one map f which takes a square in R2, simul-
taneously stretches and bends it and replaces it over itself as indicated in figure 9a. Here,
however, we have (qualitative) symmetry about the central saddle (0, 0) € R? and we therefore
study an alternative map with similar properties (Smale 1967), figure 94. In particular, we
are interested in one parameter maps with a parameter related to f of (2.4) which, for small
/; possess a saddle and two sinks. As f increases homoclinic interactions should occur and the
sinks should undergo the sequence of bifurcations outlined at the end of § 3. Ideally the
global stability properties should also be preserved.

D C
rr—r——-r-r
! |
| !
i |
| 1
| |
| b e _...L._!
A B A L1 B

(a)

PP |

A(b) ’ @ !

Ficure 9. Two maps related to homoclinic motions. (a) The Smale horseshoe; (b) a double horseshoe.

The quadratic map studied by Hénon (1976) corresponds closely to the classical horseshoe
of figure 94. It can be written in the form

Xip1 = by, }

4.6
Yons = si—hysmayts k= (1=8)=[(1=b)>+4alh (*.6)

and possesses a saddle point at (0, 0) and a second fixed point at ((b—k—1), b(b—k—1)). For
b fixed ~ 0.3 and « ‘small’, this second point is a sink. As a increases it undergoes the sequence
of bifurcations to periods 2, 4, 8, 16, ... described in § 3. Ultimately an apparently non-
periodic strange attractor appears. Furthermore, Hénon shows that maps of the form (4.6)
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are representative of the most general quadratic mappings with constant Jacobian. Here, to
satisfy the symmetry requirement, we are therefore naturally led to consider an analogous
cubic map. We preserve the linear component derived in (4.5) and study the map P, given by

Xiv1 = Yo }

4.7
Yia = —bx;+dy,—y. (+7)

As we show below this provides an analogue of the map of figure 95.

For small force fwe know that b ~ y"y*andd ~ y"+ y5, where y* = e?™*/@and y® = 2"/,
the eigenvalues of the true linearized Poincaré map for f = 0. Inserting values for the o.d.e.
studied in §3 (f = 10, & = 1, v = 100, v = 3.76) we obtain b = 0.19, d ~ 93. The rate of
expansion is thus extremely high and it is this that makes the details in figure 7 so difficult to
interpret. Since we are primarily interested in the qualitative structure of S, we reduce d
considerably in our numerical studies below. Moreover, exploratory computations showed
that nothing is gained by adding a variable coefficient to the cubic term of (4.7) and we there-
fore fix 4 and merely vary d to reproduce the action of varying fin the o.d.e.

We note an important inadequacy of the map (4.7): it is not globally attracting, since for
large y, orbits clearly escape to infinity as ¢ - co. However, a ‘trapping region’ D < R? can
easily be defined such that all orbits starting in D remain in D as ¢ - + oo and in fact approach
one of the attractors or saddles in D; cf. (Hénon 1976). To make (4.7) globally attracting we
would merely have to modify the nonlinear term suitably: it is easy to devise non-analytic
maps with the required properties, but here, for simplicity, we shall ignore this feature of F,.
We shall see in § 5 that P, preserves almost all the other significant features of P noted in § 3.

4.3. Properties of some maps on the unit interval and on the square

Before studying P, in detail we consider some more general points. First we consider one
dimensional analogues of the maps with properties of interest to us. The quadratic map

Kipg = aX;— 4%, (4.8)

and similar maps have received much attention (Hsu et al. 1975; Li & Yorke 1975; Lorenz
1964; May 1974). Here, to satisfy symmetry requirements, we would naturally study

Xipq = a%;— X% (4.9)

The properties of such maps are somewhat understood. First note that they are not one to one
whereas the planar maps (4.6) and (4.7) are; they are globally attracting, however, if we take
a suitable intervals I = R, both (4.8) and (4.9) map [ into itself.

Now consider what happens as the parameter a increases in (4.9). For a < 1 there is a
single sink at 0; at @ = 1 this becomes a source and two further fixed points appear at ¥ = +
J(@a—2). For a e (1, 2) these are sinks and then at ¢ = 2 each bifurcates to create periodic
points of period 2. A sequence of bifurcations to points of period 4, 8, 16, ... then occurs. Pre-
sumably an accumulation point g, exists at which a non-periodic motion or ‘chaos’ appears.
This is known to occur for (4.8). The sequence of bifurcations is well understood and an
important theorem on the structure of sets of periodic points of such one dimensional maps
was proved by Sarkovskii (1964) (cf. Stefan 1977) and later reproved by Li & Yorke (1975).
Basically there is an order relation on the set N of all integers > 1. Firstlet N = 4 U B and let
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A={2"|n>0,0>3,lodd}, B ={2"|m > 0}. Order 4 with increasing n and / and order
B with decreasing m; let 4 precede B we then obtain an ordered sequence of the form

345474..4234254...4434454...4834... 41648444241 (4.10)
The theorem of Sarkovskii may then be stated:

THEOREM. Let P: R — R be a continuous map with a periodic orbit of period n. Then P has a periodic
orbit with period m for every m € N such that n € m.

Thus period 16 implies periods 8, 4, 2 and 1 (a fixed point) and period 3 implies everything
else, or chaos (Li & Yorke 1975). It is clear that as the sequence of bifurcations noted above
occurs, orbits of arbitrarily high period appear (27; 27/; n - ). See Lorenz (1964) for a
general discussion of such phenomena. Lorenz also discusses the use of statistical measures in
the study of maps such as (4.8) and (4.9). Li & Yorke carry this further and prove that an
invariant measure exists for such maps. The ergodic mixing property of maps such as (4.8)
and (4.9) is closely related to their geometric property of folding the interval I (once in the
case of (4.8) and twice in (4.9)) and replacing the folded interval within itself.

The one dimensional studies are relevant to our two dimensional map in the following way.
With a suitable (nonlinear) charge of coordinates (#, y) = (u, v), maps such as P, can some-
times be put into the form (u, v) - (f(«), g(u, v)), where f(u) is iself of the form u,, = au,—u?
and g(u, v) provides a contraction in a direction transverse to u. As i — + co, then, all orbits
approach the # axis and the component f(«) = au—u?® essentially captures much of the be-
haviour but not the homoclinic structure, for which a two dimensional map is necessary. However,
as we shall see, the sequence of bifurcations of (4.8)~(4.9) occurs for P; and Sarkovskii’s theorem
also seems to apply. For examples of the use of a one dimensional map in the analysis of a
three dimensional flow, see Guckenheimer (1978), Rand (1978) and Williams’s (1978) work
on the Lorenz equations.

5. DIGITAL COMPUTER STUDIES OF THE MAP P,
5.1. Fixed points and bifurcations
We first establish some basic properties of the map F;:

Xiv1 = Yo

5.1
Yo = —bx;+dy,—yd; d>0,b > O.} (8.1)

We regard d as the parameter. P; has a fixed point at (0, 0) for all d; for d < 144 thisis a
sink and for d > 1+5 a saddle with two positive eigenvalues. At d = 1+5 two new fixed
points appear at (+(d—b—1), +(d—b—1)}); these are sinks for d < 2(1+5) and for
d > 2(1+b): saddles with two negative eigenvalues, one of modulus > 1. At d = 2(1+5)
bifurcations to orbits of period 2 thus occur. As d continues to increase a sequence of bifurca-
tions occurs exactly as in the one dimensional maps (4.8-9). After each bifurcation the saddles
thus created (of periods 1, 2, 4, 8, ...) persist unchanged on dincreases. As we shall see below, for
d ~ 2.3(1+b) non-periodic motions or motions of very high period appear, just as Sarkovskii’s
theorem suggests. For approximations to the true Poincaré map of the strange attractor §, we
are therefore interested in studying the behaviour of (5.1) for d € (1+5, 2.4(1 +5)).
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Ficure 10. Successive iterates of P;, b = 0.2, initial conditions (xo, 7o) = (0.0001, 0.0001). () d = 2.0: period 1;
(b) d = 2.5: period 2; (c) d = 2.65: period 4; (d) d = 2.662: period 8; (¢) d = 2.71: nonperiodic motion.

2r (b) ., 1 period (2)

2r (d) 1 period (8)
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number of iterations, ¢

Ficure 11. Time series of Py; b = 0.2, initial conditions (xg, o) = (0.0001, 0.0001) except in case (¢). (a) d = 2.0;
(6) d = 2.5; (c) d = 2.65; (d) d = 2.662; (¢) d = 2.662; initial conditions (0.0001, 0.0003).


http://rsta.royalsocietypublishing.org/

b

3

=X
p &

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

y A \

Y e

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

440 P. HOLMES

5.2. Computer studies: the global behaviour of P,

For digital studies we fix & = 0.2 and vary d. The sequence of bifurcations of fixed points
noted above is illustrated in figure 10, where points of period 1, 2, 4 and 8 are shown for
d =2, 2.5, 2.65 and 2.662. The evolutions of x;, ¢ = 1,2, 3, ... are shown.in figure 11. In
each case an initial condition of x,, y, = (0.0001, 0.0001) was taken. This is close to the un-
stable manifold of the saddle at (0, 0). Successive bifurcations are increasingly difficult to
detect but can be followed at least up to period 32. In all cases a second (set of) fixed point(s)
exists in the (—x, —y) quadrant.

Successive bifurcations occur at closer and closer intervals as d continues to increase until
at d ~ 2.70 an apparently non-periodic attracting motion appears (figure 10¢). The orbits
appear to be restricted to two distinct (sets of) curves in the (x,y) or (—x, —y) quadrants
respectively. Repeated application of the local (eigenvalue) analysis sketched in § 5.1 strongly
suggests that all the periodic points retain one dimensional stable manifolds (one eigenvalue
with modulus < 1) and that we therefore have two ‘expanding attractors’, each with infinitely
many periodic points lying on some curves ¢+ in R, (figure 10¢). P; apparently maps €+(%-)
into itself. Neglecting the attracting direction transverse to * the behaviour of the attractor
seems identical to that observed in the one dimensional maps (4.8-9), with the sequence of
periodic orbits appearing as Sarkovskii’s theorem suggests. A further increase in d results
(at d ~ 2.75) in the two distinct attractors becoming interlaced so that successive iterates of
P; are continually thrown back and forth between the (x,y) and (—x, —y) quadrants. To
understand this we must consider the global behaviour of P;.

To study global behaviour we establish the structure of the stable and unstable manifolds

s and M} of the saddle point at (0, 0) by taking a small rectangle Z = {x,y | |x| < 1073,
ly]| < 10-3} and iterating Py(#) forwards p times and backwards ¢ times. The boundary of #
under P% and P;? then approximates very closely those parts of M§ and M% ‘closest’ to (0, 0).
In figure 124, for d = 2.5 (p = 12, ¢ = 5) the stable and unstable manifolds have not yet
intersected. M5 and MY touch for d ~ 2.60 and at d = 2.65 the transversal (homoclinic)
intersections are clear (figure 125). The structure of M§ and M} for d 2 2.60 suggests that,
depending on initial conditions, successive iterates of P; might be carried back and forth for
some time before finally approaching an attracting orbit. Figures 114, ¢ bear this out; the
initial conditions here were (0.0001, 0.0001) and (0.0001, 0.0003) respectively. Note that the
two orbits approach different attractors as ¢ - co.

As d increases so the windings of MYy and M become more pronounced. Figure 12¢ shows
the situation for d = 2.77 and we shall devote the remainder of this section to that case, since
it corresponds to a complex situation in which a strange attractor S  apparently exists. Enlarge-
ments of portions of M§ U M} are also shown in figure 124, the structure is shown schematically
in figure 12¢ for clarity, and the behaviour of successive iterates of P;((x, 7o) = (0.0001, 0.0001))
is shown in figure 13. After 10% iterates there is no convergence to a periodic orbit, but iterates
rapidly approach M}y and it appears that MY is closely related to (= identified with?) the
expanding attractors €+ described above.

Finally one can view P; as a ‘horseshoe’ map similar to those devised by Smale. In figure
14 we show a rectangle R = {x, y | |x| < 2, |y| < 0.4} and its image P3(R) under three iterates
of P. It is clear that P} is identical to the map shown in figure 95, apart from the reversal of
orientation. P} should thus share all the features of the horseshoe maps.
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Ficure 12. Portions of the stable and unstable manifolds M} and M} of (0, 0) for the map P;; b = 0.2; (a)
d = 2.5; (b) d = 2.65; (¢c) d = 2.77; (d) enlargements of regions A, B, C; (¢) the structure of M; and M}
for d = 2.77 (not to scale).
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Ficure 14. Global behaviour of Py; d = 2.77.
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5.3. The structure of the attracting set Sy; d = 2.77

In this section we collect all the relevant information on P derived so far and use it to obtain
partial results and to make further conjectures on the structure of .S;.

For d 5 2.60, P; is relatively simple since there are no homoclinic points and almost all
orbits converge to the fixed points or periodic orbits of period 2(d € (2.4, 2.58)) or 4(d > 2.58).
For this situation we can represent the non-wandering set £2 of P; as the union of a finite number
of basic sets [3] 2 = 2, U 2" ULy UQF UL; U... where £ is the saddle point at (0, 0),
Qi are the (two) period 1 orbits (fixed points) at (+ (d—b—1)%, + (d—b—1)3}), QF are the
period two orbits etc. In fact here P;satisfies Smale’s Axiom A (Smale 1967; Chillingworth 1976),
except at bifurcation values of d, since the non-wandering set £2 is hyperbolic and the periodic
points are dense in £.

For de (~ 2.60, 2.70) we can make use of the same type of decomposition to obtain a
non-wandering set 2 = Q UQF U QT UL ULy U...UR2% UL, for n < 0. Here 2,
represents the horseshoe of figures 95 and 14 arising as a result of the transversal homoclinic
intersections of M § and M.

Recall that £y, itself contains an infinite number of periodic points but that they are all of

n n

saddle type. Thus almost all orbits approach U (£2%) or U (25); moreover, recalling that
i=0 i=0

0351 are all saddle type orbits, we can see that almost all orbits must approach the attracting

orbits Q4 or 2. The periodic points are still dense in £ and, except at bifurcation values of
d, they are hyperbolic. The complexity of the ¢ransient behaviour (cf. figures 114 and ¢) is due
to the horseshoe £2,. The invariant set £, is homeomorphic to the product of two Cantor sets
C x C which is itself homeomorphic to C (cf. Chillingworth 1976, pp. 232-235). The outsets
of 2,, which take the place of the unstable manifold M j of 2, also have a complicated structure
which is locally homeomorphic to the product of a curve and a Cantor set. The distribution
of the infinite number of periodic (saddle) points of £2, in the neighbourhood N of the original
saddle 2, = (0, 0) is such that any two orbits with initial conditions arbitrarily close in N
will eventually diverge. Thus the ultimate behaviour is particularly sensitive to initial con-
ditions, although for d < 2.70 there are only two likely outcomes for any orbit: attraction to
2% or Q. .

For d e (2.70, 2.75) the situation is only different in that the basic sets U (2%) develop

i=1

attracting non-periodic orbits; in particular, they appear to contain orbits of arbitrarily high
period {2 | n, [ - oo, [ odd} and ultimately orbits of periods ..., 9, 7, 5, 3 (see § 4.3). The
behaviour associated with 2, remains distinct from the attracting motions. However, note
that the attracting sets now appear to be one dimensional, since successive iterates of P; move
on the curves ¥+ and %¥—. Periodic points are presumably no longer dense and the system
fails to be axiom A.

For d 2 2.75, and in particular for the case studied here of d = 2.77, the situation is criti-
cally different. We will try to reconstruct what happens. First denote the two branches of the

2

global unstable manifold as My*+ and M}j~. Ford < 2.6 M+ runs from (0, 0) to U (23) and
n =0

MY~ from (0, 0) to U (£2z). This presumably continues to hold for d € (2.6, 2.7), except that
i=0

M3+t and MY~ now intersect M% and the local structure of Myt U M§~, the outset of £y, is

44 Vol. 292. A
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as described above. Thus, when the non-periodic motions in ¢+ and % replace the periodic
attractors Q35 for d 2 2.7 we expect that M3+ runs from (0, 0) to ¥+ and M3~ to ¢—. In
fact ¥+ and ¥~ appear to be indistinguishable from the ‘ends’ of M3+ and Mj~ away from
(0, 0). As d increases beyond 2.75, ¥+ and %~ are apparently ‘drawn through’ the stable
manifold M$ in a manner such that orbits attracted to €+ (or €~) enter both the negative
and positive half planes, as indicated in figure 13. Note that the iterates appear to lie on a set
which locally has the structure of the product of a curve and a Cantor set, just as in the example
discussed by Hénon (1976). Globally the set winds back and forth, approaching arbitrarily
closely to the saddle at (0, 0), and it is not clear whether it is a single curve (homeomorphic
to R) or whether two distinct curves ¥+ and %~ still exist.

The structure discussed above is, however, locally identical to that of the (generalized)
unstable manifold of £y, and it is possible that it is merely this that we observe, and orbits
ultimately (after say 10% iterates!) converge upon periodic attractors. Moreover, Newhouse
(1977) proves that if the stable and unstable manifolds of a hyperbolic basic set of a two
dimensional diffeomorphism are tangent at some point, then there is a nearby open set of
diffeomorphisms which possess wild hyperbolic sets. Wild hyperbolic sets are sets that contain
infinitely many periodic sinks and in which persistent tangencies between stable and unstable
manifolds occur. In the map F; studied here the saddle point of period 1 at (0, 0) is the basic
set and since A% and M are tangent for d & 2.60 we can conclude that wild hyperbolic sets
exist for nearby values of d. In the computer studies we may therefore only be observing
periodic motions of very long periods. In fact the C° density theorem (Smale 1971; Zeeman
1972) states that generically under the C° topology the only attractors likely to be found are fixed
points and periodic orbits and thus that strange attractors and chaotic maps such as (4.8) are
ruled out. Thus one might expect either (a) that P; simply possesses periodic orbits of high
period or (b) that if a nonperiodic attractor does exist, then an arbitrary small perturbation
can destroy it and periodic orbits will appear in its place. However, the present results, those
of Hénon (19%76), and work on one dimensional maps such as (4.8 and 4.9) all strongly suggest
that a non-periodic motion is present and that it cannot be removed by small perturbations.
One is therefore led to question the use of the C? topology: intuitively it seems reasonable to
demand that functions and (some of) their derivatives be close and not merely the functions
themselves. Moreover, as Zeeman (1972) points out, the C° results do not extend easily to
parameterised systems such as that considered here. In the C! topology strange attractors are
encountered generically: for instance the Lorenz attractor is an example which has given rise
to much work recently (Guckenheimer 1976, 1978; Rand 1978; Williams 1978).

In closing we note that even if almost all orbits of P; (and of the o.d.e.) do ultimately approach
stable periodic orbits, the periods appear to be so long that for all practical purposes they can
be regarded as non-periodic motions.

5.4. The implications for the o.d.c.

We saw_in § 2.3 how the Poincaré map P: R? - R? captures and preserves the important
features of the original o.d.e. or flow on R2x §: in particular periodic orbits of period z in the
o.d.e. become periodic points or fixed points of P», the Poincaré map iterated n times. The
non-periodic attractor S; detected for P; would thus correspond to a non-periodic orbit of
the o.d.e., similar to the orbits observed in § 3. The similarity is even stronger: compare the
qualitative structures of stable and unstable manifolds in figures 7a-d for the o.d.e. and figures
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12 a~d for F;. The sequence of bifurcations occurring for P; as d increases does not quite match
that for the o.d.e. and global attraction is not preserved, but the general behaviour is very
close. For an illustration of this, compare the time history x(¢) against ¢ for the o.d.e. in figure
8a with the sequence of iterates x; against ¢ for the map P; shown in figure 154. In figure 155
we show the sequence for a lower value of d (d = 2.71) for which two distinct non-periodic
attractors exist, as outlined in § 5.3 above: after about 40 iterates the orbit is captured by one
of the attractors.

T et | e |
T bl V|

-2

% zU /W\A 100 , 200 }
OOV Al

-2

number of iterations, ¢

Ficure 15. Time series of Pg; b = 0.2, initial conditions (x,, ¥,) = (0.0001, 0.0001).
Note non-periodic motions; (a) d = 2.77; (b) d = 2.71.

The local structure of the attracting set in the o.d.e. thus appears to be homeomorphic to
the product of a two dimensional manifold and a Cantor set (the structure of P; represents a
local section transverse to the manifold). Thus its local structure is identical to that of the
(geometric) Lorenz attractor (Guckenheimer 1976), while its global structure appears to be
closely related to the winding of the stable and unstable manifolds A% and M} of the saddle
point in the Poincaré map.

6. CONCLUSIONS AND PHYSICAL IMPLICATIONS

In the paper we have analysed an apparently simple nonlinear oscillator which has rele-
vance as a model for (small) lateral vibrations of certain buckled structures; in fact it applies
to any situation in which the unforced system possesses two stable equilibria separated by a
saddle point. We have studied the behaviour of such systems subjected to sinusoidal forced
oscillations; the generalisation to arbitrary periodic forcing is natural and relatively straight-
forward cf. Morosov (1973, 1976). The simplicity of the o.d.e. is indeed only apparent; for
certain parameter ranges we have shown that, while global stability is preserved in the sense
that motions decay and all trajectories enter a closed region 4 in the state space, the structure
of the invariant and attracting (sets) within 4 is extremely complex.

Making use of the work of Mel’nikov, we have proved that homoclinic motions occur within
A if the external force amplitude f exceeds a critical level £, which we can compute approxi-
mately in specific cases. This implies that results obtained by conventional techniques such as
the K-B averaging method are seriously in error qualitatively as well as quantitively. A
number of other nonlinear oscillators are now known to possess homoclinic orbits, and it was
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work on the van der Pol oscillator (Levinson 1949) which originally prompted Smale’s
construction of the horseshoe; cf. (Smale 1965). Holmes & Rand (1978) proved that the
(autonomous averaged) ‘variational’ equation of the forced van der Pol oscillator possesses a
homoclinic saddle connection. Since the actual system can be viewed as a periodic perturbation
of the variational equation on R2, it would be natural to apply Mel’nikov’s methods to study
the creation of homoclinic orbits in the forced van der Pol system.

In the present case the homoclinic structure plays a critical part in the attracting motions
appearing in 4 as f continues to increase. Our study of the nature of these is based upon
analogue computer solutions of the o.d.e. and on analysis and digital computer studies of its
Poincaré map P and an approximation, F;, to P. While our conclusions on the structure of
the attractors seem highly plausible, they cannot be regarded as proven.

For a range of values of d, P; apparently possesses a strange attractor S; which represents a
cross section of the strange attractor § detected in analogue computer studies of the o.d.e.
Locally S, is homeomorphic to the product of a curve and a Cantor set, just as S is homeo-
morphic to the product of a two-manifold and a Cantor set. As ¢ - + co all trajectories of the
o.d.e. approach §, which is attracting and invariant under the flow of the o.d.e. (S contains
all the periodic saddle type orbits created in successive bifurcations.) However, once on §
the trajectories appear to move in the ergodic fashion dramatically illustrated in figures 8a
and 15. Power spectra of such motions indicate a genuine persistence of non-periodic behaviour
(figure 854). The motions illustrated in figures 84 and 154 are particularly interesting, since
here the systems oscillate irregularly between two states. There are two time scales apparent:
relatively fast (almost periodic) oscillations close to the forcing frequency and slower, less
regular, changes of state. The analysis above shows that the two are intimately connected.
A number of physical problems exhibit differing time scales and two three dimensional systems
have been proposed as models in this connection. The Rikitake dynamo (Cook & Roberts
1970) and related dynamos (Robbins 1977) have been suggested as models for reversals of the
earth’s magnetic field, and recent work on the p.d.e.s of magnetohydrodynamics suggests
that such models may indeed be rigorously justifiable (Iooss & Lozi 1977). In studies o
atmospheric turbulence (Bénard convection) Lorenz (1963) proposed a drastic truncation of
the Overbeck-Boussinesq equations, which also possesses such chaotic dynamics. The Lorenz
attractor has stimulated much of the mathematical work in the area. The present study suggests
that similar phenomena may also arise in apparently simple mechanical systems undergoing
forced oscillations.

We thus see that deterministic dynamical systems can give rise to motions which are essen-
tially random. This has important implications in dynamical modelling exercises, as described
previously (Holmes 19775); in particular, qualitative information of the structure of attracting
sets is essential if numerical simulations are to be attempted, since solutions with arbitrarily
close initial conditions generally diverge after sufficient time and the behaviour superficially
appears unstable. Perhaps more significantly, the generic existence of systems such as the
present one suggests a new approach to a wide range of problems in which irregular oscillations
are observed and in which they have traditionally been ascribed to the influence of stochastic
forcing functions. If the ergodicity does arise as an intrinsic feature of the dynamics, then
profound changes are necessary in concepts such as stability and repeatability.
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